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A Brief Notes on Gene Therapy, Cell Therapy and 
Cell-Based Gene Therapy for Alzheimer’s Disease

Alzheimer’s disease (AD) is known as an age-related neurodegenerative disease 
where progressive loss of memory associated with cognition defects has been noticed. 
Molecular analysis of AD revealed the formation of aggregated amyloid-β protein and 
hyper phosphorylated tau tangles at the synaptic circuit, which causes the loss of neuronal 
communication. At present no cure has been found for AD, but there are many new 
therapeutic approaches being attempted.  For instance, the development of stem cell 
therapy is one approach for AD. In this review we highlight the merits and demerits of 
stem cell-based therapy, gene therapy for AD and proposed gene-modified cell therapy for 
AD treatment.

Abstract

Introduction:
Alzheimer’s disease (AD) is one of the neurodegenerative dis-

eases that recognized by a loss of memory and cognitive function. 
The disease continues to progress to Dementia, an irreversible 
loss of memory [1]. Normally, AD starts around the ages of 55-
65 or even older [2]. The familial gene-related early-onset of Al-
zheimer’s disease (EOAD) are found among people between 40 to 
50 years old with a poor prognosis [3].

The molecular analysis of the disease shows an accumulation 
of aggregated amyloid-β (Aβ) protein and hyper-phosphorylated 
tau tangles. Both are known to interfere with signal transmission 
[4,5]. The two forms of Aβ peptide, Aβ 1–40, and Aβ 1–42, are 
associated with EOAD [6]. A transmembrane amyloid precur-
sor protein (APP), which is present in neurons, produces soluble 
Aβ peptide after being cleaved of by β-secretase followed by 
γ-secretase, [7,8]. 

There are no cures for AD, however, different treatment strat-
egies are being attempted to improve the AD symptoms or slow 
down the progression of the disease [9,10].  Some of the main 
approaches to treat AD patients are:

•	 Inhibition of cholinesterase activities.
•	 Inhibition of NMDA receptor mediated signal transduc-

tion.
•	 Immunotherapeutic degradation of Aβ and tau deposits 

[11,12,13].
These treatments though bring some relief to the patients 

with AD but are not a cure for the disease. Recently, a new ap-
proach with stem cells and gene-modified cells are being used in 
the therapeutic strategies for AD along with other neurodegener-

ative disorders like Parkinson’s disease. This review highlights the 
various types of stem cells therapies, gene therapies and gene-
modified cell therapies for potential treatments of AD.
Possible Therapies of AD:
Small molecule inhibitors: The most direct target in anti-Aβ 
therapy is the Inhibition of Aβ production. Various small mol-
ecule inhibitors of β- and γ-secretase enzymes can reduce 
the formation of β-amyloid plaques, however, cannot re-
verse the existing plaques or improve the impaired cognition 
[14,15,16,17,18,19,20,21,22].

The inhibition of the other target, tau protein, which forms 
the neurofibrillary tangles are being tested in phase I and II trials 
with small molecule inhibitors [23,24].
Gene Therapy: Familial early-onset familial AD (EOAD) cases are 
related with the mutation of genes encoding PSEN1, PSEN2 and 
APP. Soluble Aβ-oligomers are also causing impaired synaptic and 
neuronal functions [25]. However, none of the transgenic mouse 
models that accumulate Aβ-oligomers and Aβ-plaques have re-
produced the neurodegenerative pathologies. There are other 
proteins like hyper-phosphorylated tau, apolipoprotein E (APOE)-
associated lipid metabolism and inflammation that are linked to 
AD cases [26,27,28].

Several proteases such as neprilysin, insulin degrading enzyme 
(IDE), cathepsin B, matrix metalloproteinases, plasmin, endothe-
lin-converting enzyme (ECE) and angiotensin converting enzyme 
(ACE) have been implicated in Aβ-degradation [29,30]. Therefore, 
the therapeutic approaches should be aimed for enhancing the 
gene for Aβ-degradation activity in AD patients.
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In animal study viral vector-mediated neurotrophic factors 
gene transfer can potentially halt the progression of neuro-de-
generation in AD [31,32,33].  However, systemic injection of cer-
tain growth factors results in strong peripheral side effects, and 
most of the proteins do not cross the blood–brain barrier.

Cell therapy: Thoughts of cell therapy for AD cases came from 
the achievement of doing replacement of the loss of DA-ergic 
neural cells by transplanting a functional neural cells in PD pa-
tients [34, 35]. Recently, it was shown that induced pluripotent 
stem cells (iPSCs) derived from astrocytes when transplanted 
into PD brain, turns into dopamine-producing cells inside there 
[36,37].

Since AD and PD at the their cellular and molecular level are 
more similar to each other [38], we believe cell replacement ther-
apy for AD can also be done provided the right cell-type can be 
selected. However, in contrasts to PD, the possibilities in AD are 
a great challenge because of widespread pathological changes in 
their brain [39].

Here we will discuss, not only what cells but also why and how 
our strategic concept would be the best choice for AD cell-thera-
py. In order to achieve a successful cell-replacement therapy for 
AD, some important criteria are to be considered:

•	 Selection of cells whose growth potential and survival 
length is acceptable for having enough amount of cells 
for transplantation, but not a cancer cell.

•	 Should differentiate.
•	 Should have Axon extension ability.
•	 Should have ability to form functional synapses.
•	 Stable and long-term integration of the cells into the host 

brain circuitry.
Selection of cells:

1. Embryonic Stem Cells (ESCs): ESCs are derived from devel-
oping blastocyst, and they produce every type of cell and tissue 
in the body [40,41]. Transplantation of ESCs can possibly form 
teratomas or teratocarcinomas and shows immune rejection 
[42]. Nevertheless, ESCs after differentiation to neural stem cells 
(NSCs), mesenchymal stem cells (MSCs), or other types of cells 
can be used for cell replacement therapy.

2. Neural Stem Cells (NSCs): NSCs produce neuroblasts that 
mature to neurons involved in the sense of smell, memory and 
other cognitive functions [43,44]. Therefore, the transplantation 
of NSCs in patients with AD signifies the use for cell replacement 
therapy [45]. Commercially available NSC lines (HB1.F3) have 
been explored for their efficacy using the PD and AD animal mod-
el [46,47,48], which showed promising improvement in their im-
paired cognitive function as well as their difficult movement [49]. 
Blurton-Jones et al. showed that NSCs transplanted into the hip-
pocampus of aged triple transgenic mice (3xTg-AD) reversed their 
cognitive impairment [50]. We recently demonstrated that modi-
fication of commercially available NSCs by cell-cell interaction 
with human normal melanocytes increases the growth potential 
of NSCs and their ability to produce Dopamine, BDNF, GDNF, etc. 
in cell culture media [51]. In addition, NSCs can be differentiated 
into cholinergic neurons that are especially vulnerable in AD pa-
tients [52,53].

3. Mesenchymal Stem Cells (MSCs): MSCs are multipotent 
cells that can differentiate into neuronal cells and glial cells both 

in vitro and in vivo [54,55]. MSCs can easily be grown in large 
numbers as well [56,57]. MSCs can also be used for autologous 
transplantation [58], which bypasses the need for immunosup-
pressant. Bone marrow-derived MSCs transplantation into the 
hippocampus of APP/PS1 mice has led to reduction in Aβ deposi-
tion and tau hyper-phosphorylation and showed an improvement 
in spatial learning and memory [59,60]. Similar results were also 
obtained when MSCs derived from human umbilical chord were 
transplanted into AD-mouse model [61,62].

4. Induced Pluripotent Stem Cells (iPSCs): Yamanaka and 
Takahashi et. al. first showed that somatic cells could be trans-
formed to induced pluripotent stem cells (iPSCs) by reprogram-
ming with Klf4, Sox2, c-Myc, and Oct4 transcription factors [63]. 
In addition, similar results were documented with Nanog, and 
Lin28, too. [64,65].

5. Astrocytes: Several studies have shown that there are large 
numbers of activated astrocytes and microglia around the Aβ 
plaques in AD patients [66,67,68]. This indicates the involvement 
of astrocytes and microglia in the clearance of Aβ deposits from 
the AD brain. Both cultured adult and neonatal mouse astrocytes 
showed Aβ clearance by phagocytosis [69]. Therefore, it appears 
that transplantation of astrocytes could be useful in AD treat-
ment, also.
Gene-Modified Cell-Based Therapy for AD:

Stem cells could be genetically modified to increase their 
growth rate and for longer survival time, but should differentiate 
[69]. These modified stem cells could also deliver several factors 
that can ameliorate neurological disorders [70].

Due to the loss of cholinergic neurotransmitters in AD, some 
researchers are interested in developing gene-modified cells that 
can produce acetylcholine (Ach). Primary fibroblast cells that are 
genetically engineered to express induced choline acetyltransfer-
ase have shown to produce acetylcholine (Ach) in the hippocam-
pus of transplanted rats [71].

MSCs that overexpressed the Neprilysin (NEP) gene demon-
strated the ability to degrade Aβ peptides in vitro [72]. Similar 
results were obtained when fibroblasts transfected with a lentivi-
rus carrying NEP gene were transplanted into the transgenic mice 
[73].

Wu et al. [74] was showed that genetically modified NSCs ex-
pressing human nerve growth factor (hNGF) could integrate into 
host tissue and replace damaged or lost neuronal cells. Based on 
a phase I clinical trial, implantation of fibroblasts loaded with the 
hNGF gene into the forebrain of eight AD patients showed an im-
pressive improvement in their cognitive impairment [75].

NSCs are also able to express several growth factors that can 
improve memory function in AD patients [76]. hNGF is one that 
can rescue cholinergic neurons in the rodent and primate brains 
and enhance cholinergic function of neurons in them [77,78]. An-
other growth factor, brain derived growth factor (BDNF) that is 
produced in brain, effects neuronal activity, their function, and 
survival [79]. Delivery of BDNF gene in mice and primates have re-
versed the loss of synapses, improved cell signaling and restored 
cognitive functions [80]. Furthermore, NSCs carrying transfected 
BDNF-gene exhibit higher efficacy in spatial learning and memory 
than NSCs alone [81].

Recently we have created a modified neural stem cell by cell-
cell interaction with normal human melanocytes, and the modi-
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fied cells can survive for long time but differentiate, produce 
dopamine and BDNF/GDNF [82,83,84]. Our notion, therefore, is 
that the cell-replacement therapy of AD/PD/Dementia patients 
with a modified neural cells could be relevant and productive 
[84,85,86,87], however various challenges like immune rejection, 
availability of enough amount of cells, methodologies of trans-
plantation of cells are still remain as unanswered. Intra-cranial 
deep-brain surgery (DBS) for delivery of cells is loaded with many 
risks. Therefore, the development of extra-cranial methods of cell 
delivery across the blood-brain barrier (BBB) may solve this issue 
and simplify the procedure [89,90].
Summary:

Many studies have been done to help aid AD patients yet 
there are no cures that can stop or reverse the progression of the 
AD pathology. Different stem cells have been used to study their 
efficacy against AD, which are showing promising results in both 
in vitro and in vivo studies. Cell-based therapy using stem cells 
or gene-modified cells offers several advantages such as direct 
targeting of the pathology by incorporating new cells to replace 
the existing nonfunctional or non-supportive cells. Clinical studies 
have started and have shown satisfactory results. However some 
practical challenges such as cell longevity and immune-tolerance 
added with surgical complicacy still needs to be considered.

Intra-cranial delivery includes brain surgery which has many 
risk factors, therefore the development of extra-cranial methods 
of cell delivery across the blood-brain barrier (BBB) may be war-
ranted. Second, the best site for graft placement is another issue 
to be considered, and also should it be tailored to each patient’s 
separately. Further the methodology of cell transplantation is the 
another challenge in this therapeutic approach and should be 
carefully discussed. Finally, we need to consider the risk–benefit 
analysis of cell therapy for AD, as well.
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