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Abstract
The Coronavirus Disease 2019 (COVID-19) is a devastating global pandemic. Although 

control of inflammation and supportive care is a common practice, effective and safe 
disease-modifying or preventive treatments, particularly alternative therapeutics are not yet 
available. Recent studies demonstrate that small natural molecules belonging to polyphenol 
family can interfere with various stages of coronavirus entry and replication and thus prevent 
severe symptomatology these bioactive phytoconstituents, available as natural components 
in foods and medicinal plants may provide preventive and other benefits against COVID-19, 
particularly in older adults with micronutrient deficiencies. Another age-related nutritional 
deficiency may be inadequate levels of the trace metal zinc (Zn), rendering this population 
more susceptible to COVID-19.  Here, we carried out a systematic review using Preferred 
Reporting Items for Systematic Reviews (PRISMA) guidelines, consulting the PubMed, Scopus 
and SciELO incorporating descriptors ‘COVID-19’, ‘Polyphenols’, ‘Quercetin’, ‘Dihydromyricetin’ 
and Zinc up to November 2021. Thus, following a brief review of 2 select flavonoids; quercetin 
as a potent antioxidant, and Dihydromyricetin (DHM) as an effective antiviral agent as well as 
the trace mineral Zn, essential for immune function, we conclude that combination of these 
compounds should be considered as an added prophylactic and/or adjunct treatment modality 
in COVID-19.

Keywords: Polyphenols, Flavonoids, Quercetin, Dihydromyricetin, Zinc, Combination 
therapy, Inflammation, Oxidative stress, SARS-CoV-2.
Abbreviations:

COVID-19: Coronavirus Disease 2019
Zn: Zinc
PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analyses
DHM: Dihydromyricetin
SARS-CoV-2: Severe Acute Respiratory Syndrome Coronavirus 2
ACE-2: Angiotensin-Converting Enzyme-2
ARDS: Acute Respiratory Distress Syndrome
MODS: Multiple Organ Dysfunction Syndrome
LOX: Lipoxygenases
NADPH: Nicotinamide Adenine Dinucleotide Phosphate Oxidase
FDA: Food and Drug Administration
DNA: Deoxyribonucleic acid
RNA: Ribonucleic acid; BLM bleomycin
ROS: reactive oxygen species
RNS: reactive nitrogen species
SOD: superoxide dismutase
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PI3K/Akt: phosphatidylinositol 3-kinase
Nrf2: nuclear transcription factor-erythroid 2-related factor 2
TNF-α tumor necrosis factor-alpha
NF-kB: nuclear factor-kappa B
RDI daily: recommended dietary intake
NOAEL: no-observed-adverse-effect level

Introduction
The Coronavirus Disease 2019 (COVID-19) is an acute 

respiratory disease caused by severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). First reported in Wuhan, China at 
the end of 2019, COVID-19 was declared as a global pandemic in 
March 2020. The functional receptor of SARS-CoV-2 is angiotensin-
converting enzyme-2 (ACE2), which provides viral entry into 
human cells [1,2,3]. Upon entry, SARS-CoV-2 can target different 
tissues at multiple levels, starting from the cells of nose and 
throat down to the lung, invading through vassal endothelium,  
the kidneys and nervous system where it can cause severe illness 
and death [4,5,6]. The clinical symptoms are initially manifested 
as fever, dry cough, and fatigue. Some cases are accompanied 
by nasal congestion, runny nose, sore throat, muscle pain, and 
diarrhea. Severe patients have excessively high levels of cytokines 
and chemokines in plasma, referred to as cytokine storm, which 
can lead to significant inflammation and tissue and organ damage 
[5]. Although cytokine storm is considered a hallmark of COVID-19, 
its full role in COVID-19 disease course is yet to be fully elucidated 
[7,8,9,10]. Acute respiratory distress syndrome (ARDS), shock, 
multiple organ dysfunction syndrome (MODS), and sudden 
myocarditis appear in severe and terminal patients afflicted with 
COVID-19 [5,11,12,13]. It is of importance to note that most of the 
afflicted individuals with COVID-19 exhibit only mild or moderate 
symptoms, whereas 5–10% of any population may present with 
severe and even life-threatening disease course. The overall  
mortality rate due to COVID-19 is approximately 2%. Currently, 
supportive care measures such as ventilation oxygenation and 
fluid management remain standard care. A number of clinical 
trials are underway to identify effective drugs and/or nutrients 
in prevention or intervention in COVID-19 [14,15,16,17]. In this 
regard, recent publications have highlighted potential use of plant 
derivatives particularly flavonoid compounds (e.g., quercetin) in 
countering various detrimental consequences of COVID-19 [18,
19,20,21,22,23,24,25,26,27,28]. However, additional flavonoid 
compounds such as Dihydromyricetin (DHM) and the essential 
heavy metal zinc (Zn) supplements together with quercetin may 
provide further protection against COVID-19. In this review we 
provide justification for such a recommendation.    

Although immunological mechanisms driving COVID-19 
pathogenesis are still largely unknown, new understanding has 
emerged about the innate and adaptive immune responses 
elicited in SARS-CoV-2 infection, which are mainly focused 
on the dysregulated inflammatory response in severe 
COVID-19. Polyphenols are naturally occurring products with 
immunomodulatory activity, playing a relevant role in reducing 
inflammation and preventing the onset of serious chronic 
diseases. Mainly based on data collected before the appearance 
of SARS-CoV-2, polyphenols have been recently suggested as 
promising agents to fight COVID-19, and some clinical trials have 
already been approved with polyphenols to treat COVID-19. The 
aim of this review is to analyze and discuss the in vitro and in 

vivo research on the immunomodulatory activity of quercetin 
as a research model of polyphenols, focusing on research that 
addresses issues related to the dysregulated immune response 
in severe COVID-19. From this analysis, it emerges that although 
encouraging data are present, they are still insufficient to 
recommend polyphenols as potential immunomodulatory agents 
against COVID-19
Methods

Using PRISMA guidelines and consulting PubMed, Scopus 
and SciELO with key words such as ‘COVID-19’, ‘Polyphenols’, 
‘Quercetin’, ‘Dihydromyricetin’ and ‘Zinc’, more than 200 
relevant articles were reviewed to provide the summary and 
recommendations detailed in this presentation. No specific 
clinical trials were evaluated, rather the search was concentrated 
on essential information relevant to the topic..
Flavonoids

Bioactive phytoconstituents, available as natural components 
in foods and medicinal plants, provide preventive and curative 
health benefits in COVID-19. Bioactive food components like 
alkaloids, peptides, flavonoids, flavones, anthocyanins, phenolic 
acids, polyphenols, tannins, resveratrol, polysaccharides, and 
sterol have been identified as “green” ACE inhibitors [20, 
21,22,23,24,25,26,27,28,29,42]. It is of relevance to note that 
flavones are the 3-hydroxy derivatives of flavanones, also a type 
of flavonoid that is colorless and occurs in plants as a glycoside. 

Flavonoid monomers mainly include quercetin, kaempferol, 
and myricetin, while flavanones include Dihydromyricetin (DHM). 
They are considered the largest group of phenolic phytochemicals 
in higher plants belonging to secondary plant metabolites 
found in fruits, vegetables, seeds, roots, propolis, and other 
plant products such as tea and wine [23]. There are more than 
9000 structurally identified flavonoids. Although only recently 
flavonoids have caught the attention of researchers for their 
potential implication, flavonoid research spans several decades. 
Multiple health-promoting effects, ranging from nutraceutical, 
pharmaceutical, medicinal, and cosmetic applications to anti-
carcinogenic properties have been ascribed to these compounds 
[23]. In fact, protective role of flavonoids in the diet was recognized 
in the 1990s [43], when flavonoid contents of 28 vegetables and 
9 fruits and teas, wines, and fruit juices were quantified [44,45]. 
Shortly thereafter, an assessment based on dietary history 
of quercetin, kaempferol, myricetin, luteolin, and apigenin 
concluded that flavonol and flavone intake reduced mortality 
from coronary heart disease [45]. Various other beneficial effect 
such as antihypertensive, antihistamine, antimicrobial, memory 
enhancing, and mood-boosting properties were also ascribed 
to these flavonoids [46,47,48,49,50,51]. Indeed, flavonoids are 
now considered as chief antioxidants, free radical scavengers 
and chelators of divalent cations. This, together with their lack of 
systemic toxicity and their ability to synergize with conventional 
drugs, as well as their “pleiotropic” effects, meaning that they 
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can influence different cellular targets and affect multiple 
pathways [52,53], have resulted in their  utilization as basic 
natural ingredient in more than hundred herbal medicines [5,50]. 
Recent reports on antimicrobial and anti-inflammatory effects of 
flavonoids and their possible protective role against COVID-19 
led us to examine in more detail potential utilization of quercetin 
and DHM alone or in combination with the trace element zinc 
(discussed below) as nutritional supplements to aid in prevention 
and/or treatment of COVID-19.
Quercetin

The natural flavonoid quercetin is frequently found in low 
amounts as a secondary plant metabolite such as in fruits, nuts 
and vegetables. It is arguably the most investigated flavonoid to 
date, and onions and apples are the most commonly consumed 
dietary sources, though most studies use pure quercetin [54]. 
Quercetin itself enters the circulatory system in trace amounts 
and appears predominantly as glucuronide, sulfate, and methyl 
metabolites [55]. It can cross the blood–brain barrier [56], and has 
various biological effects including potent anti-oxidant properties 
as it inhibits oxidative species generating enzymes such as 
xanthine oxidase, lipoxygenases (LOX), and nicotinamide adenine 
dinucleotide phosphate oxidase (NADPH)[ 29,30,31,57,58,59,60]. 
It may also act as an antidiabetic agent [30,61,62,63]. Because 
quercetin has senolytic activity it can affect cell cycle, interact 
with type II estrogen binding sites, and inhibit tyrosine kinases 
[64], hence the suggestion of its potential utility as an anticancer 
drug [30,65-66]. Importantly in relevance to COVID-19, 
quercetin’s action as zinc ionophore has led to the suggestion 
of an antiviral activity against many RNA viruses including SARS-
CoV-2 [31,32,67,68,69]. Furthermore, antithrombotic action of 
quercetin may be an additional desirable effect against COVID-19, 
as thrombotic incidences are common manifestation with this 
disease [20,33,70]. In this regard, it has been demonstrated 
that quercetin and quercetin-3-O-rutinoside prevent platelet 
aggregation and inhibit LOX activity in various cell culture models 
as well as in vivo [60,71].

Isolated quercetin is marketed as a dietary supplement, 
mostly as the free quercetin aglycone, and frequently in daily 
doses of up to 1000 mg/day exceeding usual dietary intake 
levels. In silico modelling of the interaction between the SARS-
CoV-2 viral spike protein and ACE2, quercetin was identified as 
one of the top five most potent compounds for binding to the 
interface site and potentially disrupting the initiating infection 
process [72]. Considering that this was detected in a database 
consisting of 8,000 small molecule candidates of known drugs, 
metabolites, and natural products, it gives credence to potential 
antiviral use of quercetin.  This contention is further supported 
by finding that quercetin was active against infection in a model 
of virus cell entry as it inhibited the 3C-like protease of SARS-
CoV in vitro [73,74]. Moreover, earlier studies showed that 
quercetin has the capacity to block the entry of SARS-CoV into 
host cells [73]. Recently, it was speculated that quercetin could 
be involved in immune regulation [12,75], and that it could be 
of potential therapy for lung injury associated with COVID-19 
due to its anti-inflammatory, antiviral, and immunomodulatory 
effects [19,20,21,27,76,77,78,79]. Based on these findings, it has 
been suggested that quercetin be incorporated into trials against 
COVID-19 [34,80]. 

The United States Food and Drug Administration (FDA) has 
already approved oral doses of quercetin as safe for human 
consumption. Quercetin given nasally was effective in a rat 
model of allergic rhinitis [80], and the safety of quercetin has 
been favorably assessed [81]. Quercetin at high doses, like 
any other bioactive compound, could have potentially off-
target effects. Following local application by a nasal spray the 
possibility exists that quercetin could diffuse or be transported 
to other tissues such as the lungs. Quercetin is widely used as a 
nutritional supplement and may be beneficial against a variety 
of diseases. Previously found beneficial effects on cardiovascular 
health biomarkers after regular consumption of quercetin [82], 
could deliver an additional positive outcome as patients with pre-
existing cardiometabolic syndromes such as hypertension are at 
increased risk during Covid-19 infection [11,12,83]. Additionally, 
due to its neuroprotective properties, its application in various 
neurodegenerative diseases such as Parkinson’s disease, 
Alzheimer’s disease, Huntington’s disease, multiple sclerosis 
and amyotrophic lateral sclerosis as well as epilepsy has been 
suggested [36,41]. Although many of the effects of quercetin 
have proven beneficial the potential of its reprogramming of the 
cellular energy metabolism should be taken into account [84,85]. 
A phase one clinical trial of quercetin carried out in 1990’s showed 
it to be safe and provided evidence of antitumor activity [86]. 
Further anticancer potentials of quercetin have been recently 
reviewed [30,35].  To date, one study of quercetin in Covid-19 has 
been entered into a clinical trial www.clinicaltrials.gov.

It is of importance to note that quercetin bioavailability 
is generally poor and because of its lipophilicity has low water 
solubility. Moreover, several factors such as glucose moieties, 
dietary fat, vitamin C as well as age and gender may affect 
quercetin levels in positive or negative ways [64,87,88,89,90,91]. 
In this regard it is noteworthy that food intake is a major source 
of quercetin and unlike majority of supplements, most of the 
quercetin in food is attached to sugar moieties such as glucose 
or rutinose. Thus, onion-derived quercetin, which is mainly 
quercetin glucoside, has a better bioavailability than apple-
derived quercetin, which contains quercetin rhamnoside and 
quercetin galactoside [92,93]. In addition, quercetin has a better 
bioavailability when consumed as a cereal bar ingredient instead 
of capsule [94]. This is because quercetin’s homogenous solid 
dispersion with other cereal ingredients results in a larger surface 
area and hence a better absorption [64,94,95]. Also, ingestion 
of quercetin with short chain fructooligosaccharide improves 
its bioavailability as this saccharide suppresses the bacterial 
degradation of quercetin aglycone in the large intestine and allows 
for more quercetin absorption [96]. Vitamin C as an antioxidant 
can protect against oxidative degradation of quercetin and hence 
improve its absorption and bioavailability [64,97,98]. It would 
be of significant interest to determine whether combination 
of quercetin with zinc and DHM (discussed below) would also 
enhance its bioavailability. Nonetheless, search for other methods 
of improving bioavailability of flavonoids in general and quercetin 
in particular using nano-capsulation or a phospholipid delivery 
system are under way [24,28]. 
Dihydromyricetin (DHM)

Dihydromyricetin (DHM) is a unique flavanonol, a subgroup 
of flavonoids isolated from Japanese raisin trees (Hovenia dulcis 
Thum) and Chinese Rattan tea (Ampelopsis grossedentata) 
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[99,100]. This subgroup is a class of secondary plant metabolites 
that perform many physiological functions in plants and have 
been shown to have antioxidant, anti-inflammatory and 
neuroprotective properties, and their use has been associated 
with motor and memory improvements [100]. DHM specifically 
has been recommended for diverse conditions such as metabolic 
diseases, including diabetes [101], liver disease [102], septic 
acute kidney injury [103], inflammatory bowel disease [104], 
atherosclerosis [105], cancer [106], neurodegenerative diseases 
including Alzheimer’s disease [107,108].

After ingestion by animals, some DHM is metabolized in the 
gastrointestinal tract and liver, and the rest is absorbed into 
the bloodstream and is widely distributed throughout the body, 
including the heart, lungs, kidney and the brain tissue [109]. DHM 
is poorly absorbed into the bloodstream, with a bioavailability of 
only 4.02%. Furthermore, the time required for it to reach peak 
plasma concentration is 2.67 h after oral administration at a dose 
of 20 mg/kg [110]. The uptake and transport of DHM occurs mainly 
through a passive diffusion mechanism, which can partially explain 
the low bioavailability of DHM after oral administration [111]. 
DHM is completely excreted in urine and feces after 12 h. Seven 
to eight DHM metabolites have been identified in urine, feces, 
and blood [109], all of them produced by common metabolic 
routes such as dihydroxylation, methylation, glucuronidation, 
reduction, and isomerization [85,88]. Whether these metabolites 
have any pharmacologic effect is still unknown.

Although there have been few DHM toxicity studies, some 
important information has already been obtained. For example, 
the lethal dose 50% for oral administration in mice is >5 g/kg 
[113]. At concentrations ranging from 150 mg/kg (500 mmol/L) 
to 1.5 g/kg (5,000 mmol/L), DHM did not cause any acute 
toxicity or had significant side effects in mice [114]. However, 
nephrotoxic components of some herbal medicine including 
flavonoid glycosides was recently reviewed [115,116]. Since low 
bioavailability limits the pharmacologic efficacy [117], several 
preparations with better solubility or permeability have been 
identifies in vitro studies. These include microemulsion [118], 
nanoparticles [119], soluble cocrystals [120], nanoencapsulation 
[121], and solid dispersions and inclusion complex [13]. In this 
regard, a nanoscale DHM-phospholipid complex significantly 
increased oral bioavailability in rats [122]. 

In regard to COVID-19, DHM effects against a wide range of  
deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) viruses 
has been studies and it is anticipated that compounds with 
sufficient bioavailability will find therapeutic use in COVID-19. 
Specifically, it was shown that DHM is an effective inhibitor 
for SARS-CoV-2 Mpro, (coronavirus main protease), which is 
essential for SARS-CoV-2 replication. Moreover, DHM prevented 
bleomycin (BLM)-induced pulmonary inflammation and fibrosis 
in mice, suggesting that DHM could be a potential medicine for 
the treatment of COVID-19 and its sequelae [123]. DHM also has 
antithrombotic effects via inhibition of platelet activation and 
reduction of fibrin generation as a result of endothelial protection 
[124]. This action, similar to that of quercetin (discussed above) 
would be an additional desirable effect against COVID-19. 

Several in vitro studies have shown that DHM inhibits lipid-
peroxidation [125,126,127,128], which suggest that DHM can 
protect cell membrane lipids against the damage induced by an 
excess of reactive oxygen species (ROS) and reactive nitrogen 

species (RNS). Indeed, DHM may reduce oxidative damage via 
several mechanisms including: a direct radical-scavenging and 
iron (Fe+2)-chelation [129]; increasing the enzymatic activity of 
superoxide dismutase (SOD), which catalyzes the dismutation of 
superoxide anion to molecular oxygen [130,131]; modulation of 
CAMP-activated protein kinase to cause inhibition of the oxidative 
stress response [132]; as well as activating phosphatidylinositol 
3-kinase (PI3K/Akt) and modulating the nuclear transcription 
factor-erythroid 2-related factor 2 (Nrf2), which participates in 
the induction of enzymes involved in detoxifying and antioxidant 
properties [133,134,135]. 

The anti-inflammatory effect of DHM, on the other hand, 
have been attributed to decreases in the production of pro-
inflammatory cytokines such as interleukin IL-1β and IL-6, and 
increases in the production of anti-inflammatory cytokines such 
as IL-10, as well as reduction of nitric oxide [135,136]. In addition, 
DHM has been shown to reduce tumor necrosis factor-alpha 
(TNF-α) levels through inhibition of nuclear factor-kappa B (NF-
kB), a protein complex that controls cytokine production and 
regulates apoptosis [137]. 

It is therefore evident that both quercetin and DHM share 
a number of positive effects such as anti-inflammatory, anti-
oxidant and immune modulatory characteristics that can be of 
significant counter-balance to the detrimental effects of SARS-
CoV-2 virus. Although the bioavailability of both these compounds 
is of a relative concern, it appears that their combination would 
nonetheless be of benefit in prevention and/or as adjunct 
treatment in COVID-19 as their mechanisms of action might 
provide an additive or synergistic effect. This potential outcome, 
together with the following discussion on zinc provides a strong 
justification for the combined use of these 3 substances as an 
adjunct strategy in prevention and/or treatment of COVID-19.
Zinc

Zinc is one of the most commonly over-the-counter 
naturopathic medicine used for a variety of clinical indications 
including prevention and treatment of viral respiratory infections, 
tissue repair and a healthy immune system [114]. This is because 
zinc has an essential role in immune system, as well as in airways 
function, wound healing and tissue repair [139,140,141]. It may 
also modify the host’s response to an infection as it is an essential 
co-factor element with a broad range of functions in the body. 
In addition, a role in regulation of gene expression as well as 
in insulin and blood pressure modulation has been ascribed to 
zinc [142]. The fact that Zn can be formulated as a stand-alone 
nutraceutical or as a combination product containing other 
minerals, vitamins and herbs makes it ideal for a combination 
therapy, particularly with flavonoids, which are known to act as 
zinc ionophores [143]. Indeed, a combination of quercetin and 
zinc has been advocated in treatment of bladder cancer [144]. 
The daily recommended dietary intake (RDI) of elemental zinc is 
around 2 mg for infants (up to 6 months of age), and gradually 
increases to 11 mg for males, and 8 mg per day for females older 
than 13 years [145]. Tolerable upper limits for zinc are estimated 
to be 7 mg for children aged 1–3 years and increasing up to 25 mg 
for adults and females of any age who are pregnant or lactating. 
The no-observed-adverse-effect level (NOAEL) for adults is 
around 50 mg/day [146]. 

Over 17 % of the global population is estimated to be zinc 
deficient [147], and 20 % of national diets contain insufficient 
zinc to meet minimum health requirements [148,149]. While zinc 
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insufficiency/deficiency is known to diminish antibody and cell-
mediated immunity in humans, which can increase the risk of 
infections, this may only become apparent upon immune system 
provocation [150,151]. Zinc’s ability to reduce the risk of viral 
respiratory tract infections, including SARS-CoV-2, can shorten 
the duration and severity of the illness. It is suggested that in 
addition to its direct antiviral properties, zinc has the potential 
to reduce inflammation, improve mucocillary clearance, prevent 
ventilator-induced lung injury, and modulate antiviral immunity 
[152].

Zinc can inhibit the enzymatic activity and replication of SARS-
CoV RNA polymerase and may inhibit ACE2 activity [147,152-
154]. Zinc is also thought to potentiate the therapeutic effects of 
chloroquine [155], as chloroquine also acts as a zinc ionophore 
increasing Zn2+ influx into the cell [152]. Other consequences of 
zinc deficiency include an increased risk of vitamin A deficiency 
that is also critical for immune function. Zinc’s effect on carrier 
proteins and activation enzymes is necessary for vitamin A 
production [156]. The potential role of zinc as an adjuvant 
therapy for SARS-CoV-2 may be broader than just antiviral and/
or immunological support. Zinc also plays a complex role in 
hemostatic modulation acting as an effector of coagulation, 
anticoagulation and fibrinolysis [157,158,159]. As discussed 
above, this is of considerable significance as coagulation 
consequences of COVID-19, leading to stroke has been amply 
documented [156-160, 160-162]. 

Although zinc supplementation was shown to be effective in 
prevention of pneumonia in children aged two to 59 months [163], 
the effectiveness of zinc in preventing or treating SARS-CoV-2 
infections is yet to be systematically evaluated. Nonetheless, 
given the positive attributes discussed above, addition of zinc 
as a nutritional supplement in combatting COVID-19 is highly 
recommended [164]. 
Conclusion

Besides antivirals, anti-HIV protease inhibitors, and anti-
inflammatory agents that are currently used against the severe 
cases of COVID-19, natural compounds isolated from the plant 
such as flavonoids represent an additional therapeutic option. 
Flavonoids’ lack of systemic toxicity plus their ability to synergize 
with conventional drugs and mineral/micronutrients makes them 
an ideal nutritional supplement to interfere with the coronavirus 
life cycle. Moreover, higher level of intracellular zinc can affect 
RNA-dependent RNA polymerase and decrease replication 
mechanism of RNA viruses. It is therefore concluded that 
combination of the potent antioxidant quercetin and antiviral 
DHM with mineral zinc as supplements could offer an adjunct 
strategy in prevention and/or treatment of COVID-19 (Figure 
1).
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