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Abstract
Background: Distinguishing the unique immune microenvironment of left and right 

colorectal cancer (CRC) is essential for better the development of tailored therapeutic strategies 
and improving patient outcomes. However, few data was available on single-cell RNA-seq 
(scRNA-seq)-based analysis of the immune profile in these regions. Therefore, we aimed to 
depict and compare the immune landscape among left and right colorectal cancer and the 
paired normal tissue. Targeted genes and pathways was analyzed for constructing transgenic 
Tumor Infiltrating Lymphocyte (TIL) to improve its efficacy in solid tumors.

Methods: Bioinformatics’ analysis was performed on GSE200997 obtained from GEO (Gene 
Expression Omnibus) database. By analyzing the scRNA-seq data, immune cell clusters were 
identified and their proportions and differentially expressed genes (DEGs) on the meaningful 
immune cell clusters were compared among left and right colorectal cancer tissues and the 
paired normal tissue. Monocle3 was used to analyze the developmental sequence of cell 
clusters and genes involved in the progression of CRC. CellChat package was conducted to 
characterize the underlying mechanism of immune cell recruiting.

Results: In this study, we found that more CD8 T cells were in exhausted state in right tumor 
tissue (RT) than in normal tissue (N) and left tumor tissue (LT) microenvironments, where CXCL13 
and MTRNR2L8 were not only mainly involved in the differentiation of CD8 from naive T cells to 
exhausted T cells but also a factor in the poor prognosis of CRC patients. CD8 T cell exhaustion 
was also associated with the presence of BATF, FOXP3, TIGIT, and TNFRSF4 on Treg that inhibit 
CD8-mediated immune responses. In addition to that, we found that in tumor tissue, especially 
RT and MSI-H state the proportion of epithelial cells was higher, wherein invasive cancer 
cells developed from epithelial cells and shared the same input and output signal patterns as 
epithelial cells. Further crosstalk analysis of epithelial cells on cytotoxic T lymphocytes (CTLs) 
revealed that comparing to epithelial cells, the invasive cancer cells expressed TFG-β and CXCL 
signaling axis in LT, and TGF-β was highly expressed by epithelial and endothelial cells with 
CTL cells in RT, which may be a key mechanism to promote tumor invasion, progression, and 
treatment resistance. 

Conclusions: Most CD8 in RT are effector memory T cells and are more likely to differentiate 
into exhausted T cells with high expression of CXCL13 and MTRNR2L8 and less expression of 
chemokines. Cells responsible for this phenomenon are proliferative cancer cell, Treg, invasive 
cancer cell, and epithelial cell in LT, and proliferative cancer cell, endothelial cell, Treg, and cancer 
stem cell in RT. The pathway involved in the interactions between above cells and cytotoxic T 
cell is mainly TGFB-TGFBR. 

Keywords: Colorectal cancer; Tumor microenvironment; Single-cell RNA sequencing; Cell 
crosstalk
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Introduction
Colorectal Cancer (CRC) is one of the most common 

malignancies worldwide, ranking as the third most frequently 
diagnosed cancer and the second leading cause of cancer-related 
deaths globally [1]. Despite advancements in screening and early 
detection, a significant number of CRC cases are diagnosed at 
an advanced stage, where treatment options are limited and 
less effective [2]. The growing burden of CRC underscores the 
urgent need for more precise research to better understand its 
profile, identify novel biomarkers for early detection, and develop 
targeted therapies [3]. As a highly heterogeneous disease, 
differences of CRC are not only between patients but also within 
different regions of the same tumor [4,5]. Emerging evidence 
suggests that the right and left halves of the colon exhibit distinct 
biological characteristics, including variations in their genetic, 
epigenetic, and immune landscapes [6]. Previous literature on 
single-cell sequencing analysis of Colorectal Cancer (CRC) has 
significantly advanced our understanding of the cellular diversity 
and molecular characteristics of these tumors [7]. However, 
many studies have predominantly focused on the overall tumor 
microenvironment without adequately distinguishing between 
the right and left sides of the colon. This oversight neglects the 
well-documented biological differences between right-sided and 
left-sided CRC.

To fully understand these complex biological differences, 
bioinformatics analysis plays a crucial role by enabling the 
integration and interpretation of large-scale single-cell data, 
thereby identifying novel biomarkers and potential therapeutic 
targets specific to the right and left-sided CRC. Conducting such 
analyses is essential for the development of more effective, 
tailored therapeutic strategies and improving outcomes for CRC 
patients.
Methods and Materials
Data information

The series GSE200997 was obtained from GEO (Gene 
Expression Omnibus) database [7]. Droplet-based scRNA-seq 
(10X Genomics Single Cell 5' Platform) were performed on 49,589 
cells from 23 samples of 16 racially diverse, resectable treatment 
naive CRC patients, including 8 tumor tissue from the left side 
colon cancer (Patient 2, 4, 6, 9, 10, 14, 15, 16) and another 8 
(Patient 1, 3, 5, 7, 8, 11, 12, 13) from the right colon cancer, with 
7 paired para-carcinoma tissue (Left side colon: Patient 4, 6, 10, 
14, 15. Right side colon: Patient 7, 11).
Bioinformatics’ Analysis

R package Seurat was used to analyze cell profile of CRC 
microenvironment in both tumor site and the paired normal 
tissue. The first cell clustering was used to define major cell groups, 
including T cells, B cells, Hepatocytes, Goblet cells, Monocyte, 
progenitor cells, endothelial cells and mast cells. The second cell 
clustering was used to define subgroups in T cells. Cell clusters 
were determined using the CellMarker website (http://xteam.
xbio.top/CellMarker/search.jsp). Differential genes expression 
analysis was conducted use Volcano plot R package. Changes in 
differential gene expression were > 2-fold (log2 FC > 1). Pathway 
enrichment analysis was performed using the DAVID website 
(https://david.ncifcrf.gov/) to exam the enriched processes in 
different cell clusters. Expression of cytokines, chemokines and 
their receptors, immune checkpoints and their ligands were 

shown by dot plots. To identify the cells and genes potentially 
involved in the development of colon cancer, trajectory analysis 
was performed using Monocle 3. Kaplan-Meier curves were 
conducted use the Kaplan-Meier plotter website (https://kmplot.
com/analysis) to determine the importance and role of genes 
(DEGs) in prognosis [8]. 
Statistical Analysis

All statistical analyses were carried out using GraphPad Prism 
software version 9.0.0. All grouped data were summarized as 
mean ± Standard Deviation (SD). An unpaired Student’s t test and 
one-way analysis of variance (ANOVA) were used to determine 
the statistical significance when comparing two groups and more 
than two groups, respectively. Two-tailed p values less than 0.05 
were considered to be statistically significant.
Results
Single-Cell Landscape of CRC Microenvironment

To investigate the differences between normal tissue, left 
colon cancer and right colon tissue, we analyzed single-cell 
sequencing data from 16 colorectal cancer patients from the 
GSE200997 dataset, including 8 patients with left-sided colon 
cancer, 8 patients with right-sided colon cancer, and 7 normal 
tissues from the paired normal tissue. High-resolution depiction 
of total 49589 cells were performed.  
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Figure 1: Overview of the single-cell landscape for CRC tumor tissues 
and paired normal tissues. 
A) Schematic diagram of scRNA-seq analysis workflow and in vivo and 
in vitro experiments. The series GSE200997 was obtained from GEO 
(Gene Expression Omnibus) database. Droplet-based scRNA-seq (10X 
Genomics Single Cell 5’ Platform) were performed on 49,589 cells 
from 23 samples of 16 racially diverse, resectable treatment naive 
CRC patients, including 8 tumor tissue from the left side colon cancer 
(LT) and another 8 from the right colon cancer (RT) , with 7 paired 
para-carcinoma tissue (N). Data were collected for integration and 
analyzing differences in cellular components of the immune microen-
vironment and their possible causes. 
B) Dotplot showed the percentage of expressed cells and average ex-
pression levels of canonical marker genes of the 10 cell types. 
C) Uniform manifold approximation and projection (UMAP) plot 
Showed the transcriptome landscape consisting of 10 major cell 
types. Cells are colored by clusters. 
D) Dotplot showed the percentage of expressed cells and average ex-
pression levels of canonical marker genes of the 16 cell types after 
further subdividing the T cells. 
E) UMAP plot of 16 major cell types including further subdivided T 
cells. 
F) Clustering of cell components in every sample. 
G) Clustering of cell components in different conditions, MSI states 
and locations. 
H) Histogram of the percentage of 16 cell subclusters in N, LT and RT.

As shown in Figure 1C, after normalization and integration, 
10 major clusters, including T cells, B cells, Natural Killer cell 
(NK), regulatory T cells (Treg), plasm cell, epithelial cells, highly 
proliferative cell, macrophage, mast cells and fibroblast were 
distinguished by high-expressed marker genes (Figure 1B). Then 
T cells were further subdivided into Nature Killer T cells (NKT), 
Cytotoxicity T lymphocytes (CTL), naïve CD4 T cell (CD4 Tn), T 
helper cell (Th), Treg, exhausted CD4 T cells (CD4 Tex) by the 
marker genes (Figure 1D) in each cell clusters (Figure 1E).

Further analysis of the percentage of cells in each patient 
(Figure 1F) and different condition, MSI state and location 
showed a decrease in T cells and an increase in epithelial cells 
in tumor tissues, MSI-H state and right colon tissue compared to 
normal tissue, MSS and left tissue. But the statistical significance 
only showed in Treg, NK and mast cell (Figure 1H) indicating that 
differences in cell numbers may not be the key point between the 
right and left halves of colorectal cancer.
Most CD8 in RT are Effector Memory T Cells and are More Likely 
to Differentiate into Exhausted T Cells with High Expression of 
CXCL13 and MTRNR2L8 and Less Expression of Chemokines

We further characterized the CD8 cells in the 3 tissues further 
and described the trajectory of cell development using the 
Monocle3 R package. As can be seen (Figure 2A,2B) in N, C0 and C8 
are two populations of initially activated T cells highly expressing 

CD27, and C1-C7 are cytotoxic T cells highly expressing NKG7 
and granzyme. Eventually, they will differentiate into C4 which 
highly express CTLA4, PDCD1, BATF. In LT (Figure 2C, 2D), CD8 T 
cells were classified into 4 clusters C0_GZMH, C1_TMIGD2, C2_
CRTAM, C3_TRDV2 which major in T cell activation and cytokine 
production. In RT, CD8 T cells were classified into naïve T, effect 
memory T (Tem) and exhausted T (Tex), but not CTL, suggesting of 
tumor immune escape which can lead to lymph node metastasis 
and prognosis of tumors [9]. 

The transition of naive CD8 T cells into effector memory 
T cells in RT is characterized by the high expression of key 
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Figure 2: CD8 T cells in RT are predominantly effector memory CD8 
T cells and tend to be more exhausted than those in N and LT. A, C, 
E UMAP plot of scRNA-seq profile from CD8+ T cells separated into 
subclusters according to their typical marker genes. Cells are colored 
according to different clusters. B, D, F Pseudotime trajectory of CD8+ 
T cell subclusters in N, LT and RT inferred by Monocle3. Trajectory 
is colored by the pseudotime. G Single-cell expression genes along 
pseudotime towards exhausted CD8+ T cell. H Kaplan-Meier plotter 
(KM plotter) illustrated the overall survival of rectum adenocarcinoma 
patients based on the TCGA dataset. I, J, K Dot plot showing average 
expression of chemokines and their paired receptors in the three 
TME. 
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genes such as TCR, IL4l1, GZMK, EMOMES, KLF2, and CCL4L2, 
alongside a progression toward an exhausted T cell phenotype 
with C-X-C Motif Chemokine Ligand 13 (CXCL13), MT-RNR2-Like 
8 (MTRNR2L8) and TRBV9 involved in (Figure 2G). CXCL13 is a 
chemokine that plays a critical role in the immune response by 
attracting B cells and T Follicular Helper (Tfh) cells to lymphoid 
tissues to form Tertiary Lymphoid Structures (TLS) [10]. But is also 
a mark of dysfunctional CD8+ T cells which are often found in the 
tumor microenvironment [11]. The upregulation of MTRNR2L8 
in exhausted T cells might be a compensatory response to the 
prolonged antigen stimulation [12] and cellular stress that 
characterizes tumor microenvironment [13]. The high expression 
of CXCL13 and MTRNR2L8 in CRC patients is associated with a 
good prognosis (Figure 2H). Further analysis on ligand-receptor 
pairs showed that chemokines on proliferative cancer cell, 
invasive cancer cell and Th was significantly decreased in RT than 
in N and LT (Figure 2I, 2J, 2K).

Outgoing communication patterns of secreting cells

Incoming communication patterns of target cells

Cell groups Patterns Patterns
Signaling

Cell groups Patterns Patterns Signaling Cell groups Patterns Patterns Signaling

A B C

D E F

Figure 3: Cell-cell communication patterns.
A, B, C The inferred incoming communication patterns of target cells 
visualized by the alluvial plot in N (left), LT (middle) and RT (right) 
respectively. D, E, F The inferred outgoing communication patterns 
of secreting cells in N (left), LT (middle) and RT (right) respectively. 
The thickness of the flow indicates the contribution of the cell group 
or signaling pathway to each pattern. The height of each pattern is 
positive related to the number of its associated cell groups and signal 
pathways.

Invasive Cancer Cells and Epithelial Cells Shared the Same 
Communication Pattern and Differentiated from Epithelial 
Cells

To further explain why CD8 T cells in RT are more Tem than 
CLT, we analyzed cellular incoming (Figure 3A-C) and outgoing 
(Figure 3D-F) communication patterns in the 3 environments using 
the Cellchat R package. Both outgoing and incoming of cellular 
communication were dominated by pattern1 and 2 in N and LT, 
and pattern2 in RT. Proliferative cancer cellgs shared pattern1 
with T cells, B cells and NKT, but invasive cancer cells and cancer 
stem cells shared communication pattern with Epithelial cell 
(Figure 3B, 3C, 3E, 3F), suggesting that cancer stem cell, invasive 
cancer cell and epithelial cell may have the same origin.
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Figure 4: Molecular features and relative genes of epithelial cells.
A, B, C Dot plot showed canonical gene marker of each epithelial 
cell subpopulation in N (left), LT (middle) and RT (right) respectively. 
D, E, F UMAP visualization of subpopulations of epithelial cell in 
three TME. G, H, I Single cell trajectory of epithelial cells and tumor 
cells in the three TME. Each dot represents a single cell and colors 
represent pseudotime from yellow to blue. J, K Bridge plot showed 
the expression of genes related to carcinogenesis in LT and RT. L 
Kaplan Meier curves showed genes negatively related to OS. M 
Volcano plot showing the differentially expressed genes in LT (left) 
and RT (right) conditions. The filter criteria was set as FDR < 0.05 and 
|log2FC|> 0.05. FC fold change. N Pathways enriched in epithelial 
cells. Benjamini-Hochberg (BH) adjusted p value < 0.05. Odds ratio = 
Gene Ratio/Background Ratio. 
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Further selection of epithelial cells and tumor cells in the 3 
environments (Figure 4A-F) and analysis of the developmental 
trajectories by Monocle3 (Figure 4G-I) showed that invasive 
cancer cells developed from Epithelial cells, and genes that were 
highly expressed in the developmental process were CLDN3, TFF3, 
PHGR1, CD93, MMP2, MTRNR2L8, MUC2, and SPINK4 (Figure 
4J, 4K). Among them, TFF3 is negatively associated with the 
prognosis of CRC patients (Figure 4L). Volcano map (Figure 4M) 
and KEGG pathway analysis (Figure 4N) showed that Epithelial cell 
highly expressed genes in colorectal cancer tissues were enriched 
in tumor-associated signaling pathways such as PI3K-AKT, P53, 
Proteasome, DNA replication, Cell cycle and so on.
The TGFB Pathway was Highly Expressed on Proliferative and 
Invasive Cancer Cells in LT and on Epithelial and Endothelial Cells 
in RT.

To further explore cells in the tumor immune 
microenvironment that are responsible for differences in CLTs 
and the communication pathways between them, we used the 
CellChat R package to analyze the number and strength of the 
overall interactions between cells in the 3 environments (Figure 
5A-C) and used each cell as a source to analyze the strength of his 
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Figure 5: The cell-cell interaction between components in the TME of 
N, LT and RT. A, B, C NetVisual circle showed the number of interactios 
(left) and interaction weights (right) of cell components in N, LT and 
RT. D, E, F Shell plots show the strongest interaction strength between 
the source cells and CTL in N, LT and RT, separately. G, H, I Dot plot 
showing the crosstalk between CTL and source cells mentioned above 
in N, LT and RT, separately. J Heat map demonstrated the role of 
each cell in the TGFb pathway in RT. The color of heat map indicates 
the importance of cells from white (importance = 0) to dark green 
(importance = 1).

signals to the other cells. The strongest effects on CTL cells in N 
were endothelial cells, Treg and Epithelial cells (Figure 5D), and in 
LT it was proliferative cancer cell, Treg, invasive cancer cell, and 
epithelial cell (Figure 5E), in RT it was proliferative cancer cell, 
endothelial cell, Treg, and cancer stem cell (Figure 5F). TGFB-
TGFBR was highly involved in proliferation cancer cell and invasive 
cancer cell comparing to the normal epithelial cell in LT (Figure 
5H) and endothelial cell in RT (Figure 5I). Heatmaps of the TGFB 
pathway also showed that endothelial cell is the major sender 
and all the other cells including endothelial cells are influencer 
(Figure 5J).
Discussion

Our findings reveal a significant divergence in the immune 
microenvironments between Right-Sided (RT) and Left-Sided (LT) 
colorectal cancer, particularly in the differentiation of CD8+ T 
cells. CD8+ T cells in Right-Sided Tumors (RT) are predominantly 
effector memory T cells with a tendency towards exhaustion, 
characterized by high expression of CXCL13 and MTRNR2L8. 
This contrasts with Left-Sided Tumors (LT) where a different 
cellular landscape was driven by interactions with specific cellular 
populations, including cancer stem cells, proliferative cancer cells, 
invasive cancer cells and Tregs. This underscores the importance 
of targeting T cell exhaustion pathways in CRC therapy, aligning 
with recent studies highlighting the role of TGF-β signaling in T 
cell dysfunction.

In solid tumors, Tumor Infiltrating Lymphocytes (TILs) have 
shown some potential in improving patient outcomes due to their 
ability to recognize and target tumor-specific antigens, especially 
when tumors are highly immunogenic or exhibit a high degree 
of immune infiltration [14-17]. However, the effectiveness of 
TIL therapy in CRC has been limited by several drawbacks. One 
of the major challenges is the highly immunosuppressive tumor 
microenvironment commonly found in CRC, particularly in 
right-sided tumors [17,18]. This environment often leads to TIL 
exhaustion and reduced efficacy due to the presence of Treg cells, 
cancer-associated fibroblasts, and other immunosuppressive 
factors that inhibit TIL function.

These limitations underscore the need for further optimization 
and enhancement of TIL therapies, including genetic modifications 
to improve their resistance to immunosuppressive signals and 
enhance their cytotoxic capabilities [12,18]. By co-expressing 
extracellular signaling peptide and intracellular costimulatory 
molecules, modified TILs are better equipped to resist the 
inhibitory signals mediated by tumorigenesis pathways and 
simultaneously enhance their activation and persistence, thereby 
improving their cytotoxic activity against tumor cells. This dual 
modification strategy aims to create a more robust and sustained 
antitumor response, addressing the challenge of immune evasion 
and potentially leading to more effective therapeutic outcomes 
in CRC patients.

But there are some flaws in our study. The data of scRNA-
seq in this study were obtained from resectable treatment naive 
patients. If we can combine the scRNA-seq data of patients with 
advanced and distant metastatic colorectal cancer or treated 
patients, we can do a more fine-tuned immune and targeted 
therapy for colorectal cancer patients.
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